Synthesis, structures and spectroscopic properties of platinum complexes containing orthometalated 2-phenylpyridine

Ninad Ghavale, Amey Wadawale, Sandip Dey, Vimal K. Jain *
Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India

A R T I C L E I N F O

Article history:

Received 12 October 2009
Received in revised form 20 January 2010
Accepted 27 January 2010
Available online 6 February 2010

Keywords:

Orthometalation
Platinum
2-Phenylpyridine
NMR
X-ray diffraction

Abstract

The synthesis, structure and spectroscopy of a series of luminescent orthometalated square planar platinum(II) complexes are reported. Reaction of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ with one mole equivalent of 2-phenylpyridine (ppyH) in 2-ethoxyethanol and water ($1: 1$ ratio) resulted in the formation of chloro-bridged dimeric precursor $\left[\mathrm{Pt}_{2}(\mu-\mathrm{Cl})_{2}(\mathrm{ppy})_{2}\right]$, which on further reactions with various anionic one-, two- and three-atom ancillary ligands, having $\mathrm{O} / \mathrm{N} / \mathrm{S}$ donors, yielded mono- and bi-nuclear platinum(II) complexes. Platinum(III) complexes of composition $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Epy})_{2}(\mathrm{ppy})_{2}\right]$ have been isolated with pyE- $(\mathrm{E}=\mathrm{O}$ or S$)$ ligands. These complexes have been characterized by elemental analysis, NMR ($\left.{ }^{1} \mathrm{H},{ }^{31} \mathrm{P},{ }^{195} \mathrm{Pt}\right)$ and absorption spectroscopy. The complexes $\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{N}^{\wedge} \mathrm{N}\right)_{2}(\mathrm{ppy})_{2}\right]\left(\mathrm{N}^{\wedge} \mathrm{N}=\right.$ pyrazole and 3,5-dimethylpyrazole); $\left[\mathrm{Pt}\left(\mathrm{S}^{\cap} \mathrm{S}\right)(\mathrm{ppy})\right]\left(\mathrm{S}^{\cap} \mathrm{S}=\right.$ ethylxanthate and diisopropyldithiophosphate); $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Epy})_{2}(\mathrm{ppy})_{2}\right]$ (Epy $=2-$ pyridinol \{Opy\} and 2-mercaptopyridine $\{\mathrm{Spy}\})$ and $[\mathrm{PtCl}(\mathrm{ppy})(\mathrm{PhNC}(\mathrm{Me}) \mathrm{NHPh})]$ have been structurally characterized by X-ray crystallography.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Orthometalated platinum group metal complexes have been extensively investigated [1,2] and have been used widely in many fields, such as organic synthesis [3,4], metallomesogens [5-7], photo-catalysts [8], opto-electronic devices [9-11] and building blocks for self-assembled molecules [12]. Orthometalated platinum complexes in particular have attracted much attention recently due to their interesting photophysical properties [13] which can be exploited for chemosensors, light emitting diodes, etc. applications. Although a number of platinum complexes are luminescent [13-16], orthometalated complexes based on 2-arylpyridines exhibit promising photophysical properties as many of them are emissive in solution under ambient conditions [13].

Emission from metalated 2-arylpyridine platinum complexes in solution has been assigned to ligand centered (LC) and/or metal-toligand charge transfer (MLCT) states. Orthometalated ligands help in raising the energy gap (ΔE) between lowest lying excited state [LC $\left(\pi-\pi^{*}\right)$ and/ or MLCT $\left(d-\pi^{*}\right)$] and high energy antibonding $d_{x^{2}-y^{2}}$ orbital to an extent that they are not thermally accessible $(\Delta E>\mathrm{kT})$. Thus the emission colors (i.e. $\Delta E)$ in orthometalated 2phenylpyridine complexes of platinum(II) can be tuned from blue-green to orange-red by appropriately substituting either the phenyl [17] and/or pyridyl [17,18] rings of 2-phenylpyridine. Substitution by an electron-withdrawing and -donating group in the

[^0]phenyl ring leads to blue and red shifts, respectively in the emission spectra [17]. Substitution of electron donating groups (Me or $\mathrm{Me}_{2} \mathrm{~N}$) at 4-position of the pyridyl ring results in to hypsochromic shift in the emission spectra [17]. Ancillary ligands in orthometalated 2-arylpyridine complexes of platinum(II) also play a crucial role on photophysical properties. For instance, $\left[\mathrm{Pt}(\mathrm{ppy}) \mathrm{Cl}_{2}\right]^{-}$ (Hppy = 2-phenylpyridine) is not luminescent in solution at room temperature whereas $[\mathrm{Pt}(\mathrm{ppy})(\mathrm{Hppy}) \mathrm{Cl}]$ is luminescent under similar conditions [19]. Much of the studies on role of photophysical properties of orthometalated 2-arylpyridine type ligand complexes of platinum(II) are concerned with β-diketonate derivatives [17,18,20,21].

In the above perspective the present investigation was undertaken to synthesize orthometalated 2-phenylpyridine platinum(II) complexes with a variety of ancillary ligands (anionic one-, twoand three-atom ligands having $\mathrm{O} / \mathrm{N} / \mathrm{S}$ donors) and identify the nature of resulting complexes. The results of this investigation are reported herein.

2. Experimental

2.1. General procedures and instrumentation

Solvents were dried by standard methods with subsequent distillation under nitrogen. All reactions were carried out in Schlenk flasks under a nitrogen atmosphere. Melting points were determined in capillary tubes and are uncorrected. IR spectra were recorded as Nujol mulls between CsI plates on a Bomem MB-102

FT-IR spectrometer. Elemental analyses were carried out on a Car-lo-Erba EA-1110 CHN-O instrument. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a Bruker DPX-300 and Avance II-300 NMR spectrometers operating at 300, 75.47, 121.5 and 64.29 MHz , respectively. Chemical shifts are relative to internal chloroform peak ($\delta 7.26{ }^{1} \mathrm{H}$ and 77.0 for ${ }^{13} \mathrm{C}$), external 85% $\mathrm{H}_{3} \mathrm{PO}_{4}$ for ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and $\mathrm{Na}_{2} \mathrm{PtCl}_{6}$ for ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$. Absorption spectra were recorded on a Chemito Spectrascan UV 2600 spectrophotometer. Emission spectra were recorded in dichloromethane on an Edinburgh Instruments' FLSP 920 system attached with 450 W Xe lamp as excitation source and red sensitive PMT as detector.

2.2. Synthesis of complexes

2.2.1. Synthesis of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{Cl})_{2}(p p y)_{2}\right]$ (1)

To an aqueous solution (20 mL) of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(996 \mathrm{mg}, 2.40 \mathrm{mmol})$ was added 2-phenylpyridine ($372 \mathrm{mg}, 2.41 \mathrm{mmol}$) in 20 mL 2-ethoxyethanol. A clear red solution was obtained, which was heated at $70^{\circ} \mathrm{C}$ for 8 h whereupon a greenish solid separated out. The solid was filtered through a G-3 assembly, washed with distilled water $(2 \times 10 \mathrm{~mL})$, acetone $(2 \times 5 \mathrm{~mL})$ followed by dichloromethane $(2 \mathrm{~mL})(608 \mathrm{mg}, 66 \%)$. The acetone-dichloromethane washings on drying gave greenish yellow complex, $[\mathrm{Pt}(\mathrm{ppy})(\mathrm{Hppy}) \mathrm{Cl}](2)$, $(115 \mathrm{mg}, 9 \%)$ as identified by ${ }^{195} \mathrm{Pt}$ NMR. mp: $>280^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{Pt}_{2}$: C, 34.3; H, 2.0; N, 3.6. Found: C, 34.2; H, 1.9; N, 3.6\%.

2.2.2. Synthesis of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{SEt})_{2}(\text { ppy })_{2}\right]$ (4)

To a dichloromethane (4 mL) suspension of $\mathbf{1}$ (103 mg , 0.13 mmol) was added 3 drops of pyridine to get a clear yellow solution. To this an excess of ethylmercaptan (3 drops) was added and stirred for 4 h . The solvent was evaporated under vacuum and the residue was washed with methanol ($3 \times 3 \mathrm{~mL}$) and dried in vacuo. The residue was dissolved in dichloromethane and passed through a short Florisil column. Slow evaporation of the solvent afforded yellow crystals ($83 \mathrm{mg}, 76 \%$), mp: $233{ }^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{Pt}_{2} \mathrm{~S}_{2}$: C, 38.0; H, 3.2; N, 3.4; S, 7.8. Found: C, 37.9; H, 3.2; N, 3.3; S, 7.4\%. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }$ in $\mathrm{nm}: 256$ (49 800); 317 (8500); 328 (8800); 367 (8500). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta=1.36$, 1.65 (each t, $7.2 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{Me}$, cis isomer); $1.58\left(\mathrm{t}, 7.2 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{Me}\right.$, trans isomer); 2.93-3.11 ($\mathrm{m}, \mathrm{SCH}_{2}$-, cis and trans isomers); 7.21$7.89\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{CH}-3,4,5\right.$ (py); cis and trans isomers); 8.90, 9.11(each d, $5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{py}$, cis isomer); 9.05 (d, $5 \mathrm{~Hz}, \mathrm{H}-6$ py, trans isomer).

2.2.3. Synthesis of $\left[\mathrm{Pt}_{2}(\mu-p z)_{2}(p p y)_{2}\right]$ (5)

To a dichloromethane suspension of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{Cl})_{2}(\mathrm{ppy})_{2}\right](396 \mathrm{mg}$, 0.51 mmol) was added $\mathrm{NaOMe}(2.16 \mathrm{~mL}(0.46 \mathrm{~N}), 55 \mathrm{mg}$, 1.0 mmol) and stirred for 15 min . Subsequently a methanolic solution of pyrazole ($73 \mathrm{mg}, 1.0 \mathrm{mmol}$) was added and the whole reaction mixture was stirred for additional 3 h . The solvents were evaporated under vacuum and the residue was extracted with dichloromethane. The extract was concentrated and hexane (2 mL) was added and on cooling $\sim 5^{\circ} \mathrm{C}$ gave yellow crystals which were decanted and washed with dichloromethane ($217 \mathrm{mg}, 51 \%$). $\mathrm{mp}: 247^{\circ} \mathrm{C}$ (dec., darkens above $240^{\circ} \mathrm{C}$). Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{Pt}_{2}$: C, 40.4; H, 2.6; $\mathrm{N}, 10.1$. Found: C, $40.7 ; \mathrm{H}, 2.2 ; \mathrm{N}$, 9.8%. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}$ in nm: 256 (43 500); 284 (25 100); 328 (12 300); 356 (9900); 406 (2900). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta=6.42$ (t, $2 \mathrm{~Hz}, \mathrm{H}-4(\mathrm{pz})$); 6.48 (m); 6.70-6.85 (m); 7.09 (d, 7 Hz); 7.457.50 (m); 7.62 (br); 7.98-8.15 (m).

2.2.4. Synthesis of $\left[\mathrm{Pt}_{2}(\mu-d m p z)_{2}(p p y)_{2}\right]$ (6)

To a THF solution of dmpzH ($26 \mathrm{mg}, 0.26 \mathrm{mmol}$) excess of NaH was added and stirred for 1 h . To this reaction mixture $\left[\mathrm{Pt}_{2}(\mu-\right.$ $\left.\mathrm{Cl})_{2}(\mathrm{ppy})_{2}\right](103 \mathrm{mg}, 0.13 \mathrm{mmol})$ was added and was further stirred for 1 h . The solvent was evaporated to obtain yellow-orange solid.

The product was extracted with THF by passing through a Florisil column. The filtrate was concentrated and acetone (1 mL) was added which on cooling $\sim 5^{\circ} \mathrm{C}$ yielded yellow crystals (75 mg , 63%). mp: above $290^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{Pt}_{2}$: C, 43.2; H, 3.4; N, 9.5. Found: C, 43.1; H, 3.8; N, 9.7\%. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}$ in nm: 260 (119000); 289 (sh); 331 (sh); 376 (24000); 411 (sh). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=2.57,2.63$ (each s, Me); 5.90 (s, CH, dmpz); $6.55-6.82(\mathrm{~m}) ; 7.06$ (dd, $7.5,1.8 \mathrm{~Hz}) ; 7.22(\mathrm{~d}, 6 \mathrm{~Hz}) ; 7.43$ (dd, $7 \mathrm{~Hz}) ; 7.81\left(\mathrm{~d}, 6 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{Pt}-\mathrm{H})=20 \mathrm{~Hz}\right)$.

2.2.5. Synthesis of [PtCl(PhNCMeNHPh)(ppy)] (7)

To a dichloromethane suspension of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{Cl})_{2}(\mathrm{ppy})_{2}\right](157 \mathrm{mg}$, $0.20 \mathrm{mmol}), \mathrm{Ag}(\mathrm{PhNCMeNPh})(125 \mathrm{mg}, 0.39 \mathrm{mmol})$ was added and stirred for 3 h . A change in color of the reaction mixture from yellow to dark brown was observed. The solvent was evaporated under vacuum and the residue was extracted with dichloromethane, and passed through a Florisil column. The filtrate was concentrated and hexane (2 mL) was added, the solution on cooling gave yellow crystals ($127 \mathrm{mg}, 52 \%$). mp: $234^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{Pt}$: C, 50.4; H, 3.7; N, 7.0. Found: C, 50.0 ; H, 3.1; N, 6.8% UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $\lambda_{\max }$ in nm: 255 (31400); 277 (sh); 325 (sh); 345 (sh); 400 (1700). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=2.09$ (s, CMe); 7.10-7.80 (m, Ph, $\mathrm{C}_{6} \mathrm{H}_{4} ; \mathrm{H}-3,4,5$ (py)); 9.34 (s, NH); 9.66 (d, $\left.6 \mathrm{~Hz},{ }^{3} J(\mathrm{Pt}-\mathrm{H})=36 \mathrm{~Hz}, \mathrm{H}-4(\mathrm{py})\right)$. ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta:-3317 \mathrm{ppm}$.

2.2.6. Synthesis of $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-O p y)_{2}(p p y)_{2}\right]$ (8)

To a suspension of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{Cl})_{2}(\mathrm{ppy})_{2}\right](389 \mathrm{mg}, 0.50 \mathrm{mmol})$ in dichloromethane, $\mathrm{NaOMe}(2.12 \mathrm{~mL}(0.46 \mathrm{~N}), 54 \mathrm{mg}, 0.99 \mathrm{mmol})$ was added and stirred for 15 min . To this mixture a methanolic solution of HOpy ($106 \mathrm{mg}, 1.11 \mathrm{mmol}$) was added and the whole was further stirred for 2 h . The reaction mixture was dried by evaporating the solvents in vacuo and extracted with dichloromethane by filtering through a G-3 sintered disc. The filtrate was concentrated and few mL of benzene and acetone was added and the solution was kept at $0-5^{\circ} \mathrm{C}$ for crystallization to yield orange crystals ($121 \mathrm{mg}, 25 \%$). mp: $243^{\circ} \mathrm{C}$ (dec., darkens above $230^{\circ} \mathrm{C}$). Anal. Calc. for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Pt}_{2}$: C, 40.1; H, 2.5; N, 5.9. Found: C, 39.5; H, 2.3; $\mathrm{N}, 6.0 \%$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}$ in nm: 261 (35 100); 294 (44 500); 326 (sh); 384 (4400); 448 (1400). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta=6.44-7.62$ (m); $8.08(\mathrm{~d}, 6 \mathrm{~Hz}) ; 9.05(\mathrm{~d}, 6 \mathrm{~Hz})$.

2.2.7. Synthesis of $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Spy})_{2}(p p y)_{2}\right]$ (9)

To a dichloromethane (10 mL) suspension of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{Cl})_{2}(\mathrm{ppy})_{2}\right]$ ($143 \mathrm{mg}, 0.18 \mathrm{mmol}$), $\left[\mathrm{Pb}(\mathrm{Spy})_{2}\right](90 \mathrm{mg}, 0.21 \mathrm{mmol})$ was added and stirred for 3 h . The color of the reaction mixture turned red. This was filtered through a G-3 assembly. The filtrate was concentrated and acetone (1 mL) and hexane (1 mL) were added and the clear solution on cooling at $\sim 5^{\circ} \mathrm{C}$ gave red crystals which were separated, washed with benzene/hexane (1:10) mixture and dried ($103 \mathrm{mg}, 60 \%$), $\mathrm{mp}: 253^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{Pt}_{2} \mathrm{~S}_{2} . \mathrm{C}_{6} \mathrm{H}_{6}$: C, 42.7; H, 2.8; N, 5.2; S, 6.0. Found: C, 41.5; H, 2.4; N, 6.0; S, 8.3\%. UVVis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }$ in nm: 259 (61 800); 283 (55 300); 352 (20 500); 502 (5300). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=6.48-7.62(\mathrm{~m}) ; 8.17(\mathrm{~d}, 6 \mathrm{~Hz}$, $\left.{ }^{3} J(\mathrm{Pt}-\mathrm{H})=30 \mathrm{~Hz}\right) ; 9.54\left(\mathrm{~d}, 6 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{Pt}-\mathrm{H})=18 \mathrm{~Hz}, \mathrm{H}-6(\mathrm{py})\right)$.

2.2.8. Synthesis of $\left[\operatorname{Pt}\left(\mathrm{S}_{2} \mathrm{COEt}\right)(\right.$ ppy $\left.)\right](\mathbf{1 0})$

To a methanolic solution of $\mathrm{NaS}_{2} \mathrm{COEt}(84 \mathrm{mg}, 0.58 \mathrm{mmol})$, $\left[\mathrm{Pt}_{2}(\mu-\mathrm{Cl})_{2}(\mathrm{ppy})_{2}\right](218 \mathrm{mg}, 0.28 \mathrm{mmol})$ was added and stirred for 3 h . The solvents were removed in vacuo and the residue was washed with hexane and extracted with dichloromethane by filtering through a Florisil column. The filtrate was concentrated and few mL of hexane was added, kept at $0-5^{\circ} \mathrm{C}$ for crystallization to yield dark yellow crystals ($193 \mathrm{mg}, 72 \%$) mp: $145^{\circ} \mathrm{C}$. IR: $1713 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$. Anal. Calc. for $\mathrm{C}_{14} \mathrm{H}_{13}$ NOPtS $_{2}$: C, 35.7 ; $\mathrm{H}, 2.8$; N, 3.0; S, 13.6. Found: C, 35.8 ; H, 2.5; N, 3.2; S, 17.1\%. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }$ in nm: 250 (32800); 287 (18200); 329 (sh); 360
(sh); 377 (11500); 435 (1900). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.57(\mathrm{t}, 7.5 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{OCHCH} 3$); $4.75\left(\mathrm{q}, 7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; 7.14-8.00(\mathrm{~m})$; $8.62\left(\mathrm{~d}, 5 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{Pt}-\mathrm{H})=37 \mathrm{~Hz}\right) .{ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \quad \delta$: -3881 ppm.

2.2.9. Synthesis of $\left[\operatorname{Pt}\left\{\mathrm{S}_{2} \mathrm{P}\left(\mathrm{OPr}^{i}\right)_{2}\right\}(\right.$ ppy $\left.)\right]$ (11)

To methanolic solution of $\mathrm{NH}_{4} \mathrm{~S}_{2} \mathrm{P}\left(\mathrm{OPr}^{i}\right)_{2}(188 \mathrm{mg}, 0.79 \mathrm{mmol})$, $\left[\mathrm{Pt}_{2}(\mu-\mathrm{Cl})_{2}(\mathrm{ppy})_{2}\right](301 \mathrm{mg}, 0.39 \mathrm{mmol})$ was added and stirred 3 h . The solvents were evaporated to dryness and the residue was extracted with dichloromethane. The extract was filtered through a Florisil column and the filtrate was concentrated. Few drops of acetone and hexane were added for crystallization and the mixture was allowed to evaporate slowly. Yellow crystals were obtained ($176 \mathrm{mg}, 40 \%$) mp: $189{ }^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{PPtS}_{2}$: C, 36.3; H, 3.9; N, 2.5; S, 11.4. Found: C, 36.3; H, 3.9; N, 2.6; S, 14.1\%. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}$ in nm: 250 (18 300); 287 (12 300); 313 (sh, 5380); 364 (4800); 410 (sh). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta=1.42$ (d, $6 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{OCHMe}_{2}$); 4.95 (sept, $6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCHMe} 2$); 7.06-7.90 $(\mathrm{m}) ; 8.78\left(\mathrm{~d}, 6 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{Pt}-\mathrm{H})=45 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 96.8$ $\left({ }^{2} J\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right)=320 \mathrm{~Hz}\right) .{ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta:-3797(\mathrm{~d}$, $\left.{ }^{2}\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right)=298 \mathrm{~Hz}\right) \mathrm{ppm}$.

2.3. Crystallography

Intensity data were collected on a Rigaku AFC7S diffractometer fitted with $\mathrm{Mo}-\mathrm{K} \alpha(\lambda=0.71069 \AA)$ radiation so that $\theta_{\text {max }}=27.5^{\circ}$. The structures were solved by direct methods [22], and refinement [23] was on F^{2} using data corrected for absorption correction effects with an empirical procedure [24,25]. The nonhydrogen atoms were refined with anisotropic displacement parameters and fitted with hydrogen atoms in their calculated positions. Molecular structures were drawn using ORTEP [26]. Crystal data and details of collection and refinement are given in Table 1.

3. Results and discussion

3.1. Synthesis and spectroscopy

The halo-bridged binuclear platinum complexes, $\left[\mathrm{Pt}_{2}(\mu-\right.$ $\left.\mathrm{Cl})_{2}(\mathrm{X})_{2} \mathrm{~L}_{2}\right](\mathrm{X}=$ anionic ligand such as alkyl, aryl, halide; $\mathrm{L}=$ neutral donor) are versatile synthons for the preparation of a variety of platinum complexes differing in nuclearity [1]. Accordingly reactions of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{Cl})_{2}(\mathrm{ppy})_{2}\right]$ with a variety of anionic ligands were conceived for the synthesis of 2-phenylpyridine platinum(II) complexes. The reaction of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ with 2-2.5 equivalents of 2-phenylpyridine in a mixture of 2-ethoxyethanol-water (3:1) at $80^{\circ} \mathrm{C}$ over a period of 16 h has been reported earlier, without characterizing data, to yield binuclear complex, $\left[\mathrm{Pt}_{2}(\mu-\mathrm{Cl})_{2}(\mathrm{ppy})_{2}\right](\mathbf{1})[17,27]$ and the resulting product has been used directly in further reactions for the preparation of β-diketonate complexes of the type [Pt(ppy)(β-dik)] [17,20]. It has been shown subsequently that under these conditions $[\mathrm{Pt}(\mathrm{ppy})(\mathrm{Hppy}) \mathrm{Cl}](\mathbf{2})$ is formed [21,28], which and related derivatives, $[\operatorname{Pt}(\operatorname{Arpy})(\mathrm{HArpy}) \mathrm{Cl}]$, have been used for the preparation of β-diketonate complexes, $\left[\operatorname{Pt}\left(\mathrm{C}^{\cap} \mathrm{N}\right)(\beta\right.$-dik $\left.)\right]$ ($\mathrm{C}^{\wedge} \mathrm{N}=$ ppy or Arpy) [21,27,29]. Ford et al. [30], however, obtained 1 by the reaction of $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]_{2}\left[\mathrm{PtCl}_{4}\right]$ in ethanol with 1.1 equivalent of Hppy in dichloromethane at room temperature for 5-7 days. Other products, 2 and $\left[\mathrm{Pt}(\mathrm{ppy}) \mathrm{Cl}_{2}\right]^{-}$are also formed when 4 equivalents of Hppy was used and the reaction was carried out in MeOH at $50^{\circ} \mathrm{C}$ for 12 h [30]. Interestingly the reaction of 2-phenylpyridine with $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ is quite facile and yields $\left[\mathrm{Pd}_{2}(\mu-\mathrm{Cl})_{2}(\mathrm{ppy})_{2}\right]$ [31] which has a cis chloro-bridged dimeric structure as revealed by X-ray structural analysis [32].

We have carried out the reaction of 2-phenylpyridine with $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ under the conditions described earlier [17] and also in 1:1 molar ratio in 2-ethoxyethanol (Scheme 1). In the former case the complex 2, as reported by Marder et al. [21] and Slugove et al. [28], was formed while in the latter reaction an insoluble product of composition (from microanalysis) " $\mathrm{Pt}(\mathrm{ppy}) \mathrm{Cl}$ " was isolated in $\sim 65 \%$ yield. This complex was soluble in coordinating solvents like

Table 1
Crystallographic and structure refinement data for platinum complexes.

Complex	5. $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{0.5}$	6. $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{0.5} \cdot \mathrm{H}_{2} \mathrm{O}$	7	8	9. $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}$	10	11
Chemical formula	$\mathrm{C}_{28.5} \mathrm{H}_{23} \mathrm{ClN}_{6} \mathrm{Pt}_{2}$	$\mathrm{C}_{32.5} \mathrm{H}_{33} \mathrm{OClN}_{6} \mathrm{Pt}_{2}$	$\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{Pt}$	$\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Pt}_{2}$	$\mathrm{C}_{44} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{~S}_{2} \mathrm{Pt}_{2}$	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NOPtS}_{2}$	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{PPtS}_{2}$
Formula weight	875.16	949.25	594.99	957.63	1145.98	470.46	562.59
Crystal size (mm^{3})	$0.15 \times 0.10 \times 0.10$	$0.15 \times 0.15 \times 0.10$	$0.40 \times 0.20 \times 0.10$	$0.15 \times 0.10 \times 0.05$	$0.40 \times 0.30 \times 0.20$	$0.50 \times 0.20 \times 0.50$	$0.40 \times 0.20 \times 0.20$
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	triclinic	monoclinic	orthorhombic
Space group	$P 2_{1 / a}$	$P 2_{1 / a}$	$P 2_{1 / n}$	C2/c	$P \overline{1}$	$P 2_{1 / n}$	$P_{\text {nma }}$
Unit cell dimensions							
$a(\AA)$	23.500(3)	34.423(10)	18.400(3)	15.630(3)	11.694(2)	18.960(6)	9.478(2)
$b(\AA)$	11.651(6)	12.790(6)	7.897(2)	11.341(3)	13.430(3)	5.755(3)	14.5200(15)
$c(A)$	19.774(5)	15.160(5)	16.555(3)	16.968(3)	14.200(4)	14.086(5)	14.685(4)
$\alpha\left({ }^{\circ}\right)$	90	90	90	90	101.130(18)	90	90
$\beta\left({ }^{\circ}\right)$	102.390(15)	101.49(2)	114.820(12)	102.015(13)	107.377(16)	109.61(3)	90
$\gamma\left({ }^{\circ}\right)$	90	90	90.00(8)	90	110.891(15)	90	90
$V\left(\AA^{3}\right)$	5288(3)	6541(4)	2183.4(8)	2942.0(10)	1873.0(7)	1447.8(10)	2020.9(7)
$\rho_{\text {calcd }}$. $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	2.198	1.924	1.807	2.162	1.963	2.158	1.855
Z	4	4	4	4	2	4	2
$\mu\left(\mathrm{mm}^{-1}\right) / F\left(\begin{array}{lll}0 & 0\end{array}\right)$	10.701/3272	8.662/3592	6.565/1148	9.719/1800	7.751/1058	9.969/888	7.240/1092
Limiting indices	$-17 \leqslant h \leqslant 30$	$-25 \leqslant h \leqslant 44$	$-13 \leqslant h \leqslant 23$	$-11 \leqslant h \leqslant 20$	$-8 \leqslant h \leqslant 15$	$-13 \leqslant h \leqslant 24$	$-6 \leqslant h \leqslant 12$
	$0 \leqslant k \leqslant 15$	$0 \leqslant k \leqslant 16$	$0 \leqslant k \leqslant 10$	$0 \leqslant k \leqslant 14$	$-17 \leqslant k \leqslant 16$	$0 \leqslant k \leqslant 7$	$-10 \leqslant k \leqslant 18$
	-25 $\leqslant l \leqslant 25$	$-19 \leqslant l \leqslant 19$	$-21 \leqslant l \leqslant 19$	$-22 \leqslant l \leqslant 21$	$-18 \leqslant l \leqslant 17$	$-18 \leqslant l \leqslant 17$	$0 \leqslant l \leqslant 19$
Range of data collection (${ }^{\circ}$)	2.55-27.51	2.53-27.50	2.71-27.50	2.66-27.50	2.70-27.51	3.07-27.51	2.56-27.50
Reflections collected/unique	12 109/3770	15 023/4495	5012/3088	3387/2326	8598/5855	$3333 / 2482$	2414/1234
Data/restraints/ parameters	12 109/0/262	15 023/0/198	5012/0/272	3387/0/190	8598/0/460	3333/0/173	2414/0/119
Final $R_{1}, w R_{2}$ indices	0.0848/0.2355	0.0734/0.1791	0.0639/0.2020	0.0353/0.0790	0.0484/0.1548	0.0257/0.0647	0.0492/0.1371
$R_{1}, w R_{2}$ (all data)	0.3156/0.1645	0.3100/0.1427	0.1230/0.1657	0.0777/0.0719	0.1413/0.0869	0.0647/0.0558	0.1402/0.1099
Goodness of fit (GOF) on F^{2}	0.907	0.81	1.025	1.014	1.001	1.087	0.988

Scheme 1.
dmso and gave a complex of composition [$\mathrm{Pt}(\mathrm{ppy}) \mathrm{Cl}(\mathrm{dmso})]$ (3) which was structurally characterized (see Supplementary material). The cleavage of chloro-bridged binuclear platinum complexes with dmso to yield mononuclear complexes is well documented [33]. The ${ }^{195} \mathrm{Pt}$ NMR spectrum of $\mathbf{3}$ in dmso exhibited a single resonance at $\delta-3807 \mathrm{ppm}$. When a dmso solution of $\mathbf{3}$ was treated with an excess of 2-phenylpyridine in NMR tube, a new ${ }^{195} \mathrm{Pt}$ resonance appeared at $\delta-3201 \mathrm{ppm}$ attributable to 2 . Based on this, the insoluble complex formed in 1:1 reaction can be considered
as binuclear complex $\left[\mathrm{Pt}_{2}(\mu-\mathrm{Cl})_{2}(\mathrm{ppy})_{2}\right]$ (1). The reaction of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ with 2 or more equivalents of 2-phenylpyridine appears to yield initially $\mathbf{1}$ which undergoes bridge cleavage reaction with the excess of 2-phenylpyridine to afford 2.

Various complexes synthesized using $\mathbf{1}$ are shown in Scheme 2. The reaction of $\mathbf{1}$ with an excess of ethylmercaptan in the presence of pyridine as HCl scavenger in dichloromethane afforded bis(thio-lato)-bridged complex, $\left[\mathrm{Pt}_{2}(\mu-\mathrm{SEt})_{2}(\mathrm{ppy})_{2}\right]$ (4). Interestingly attempts to prepare bis(thiolato)-bridged palladium complexes

(7)

(i) 2 NaOMe
(ii) 2 HOpy
$2\left[\mathrm{AgPhNC}\left(\mathrm{CH}_{3}\right) \mathrm{NPh}\right]$
(8)

(9)

(6)
(i) 2 NaOMe
(ii) 2 pzH

(5)
(4a) and (4b)

(11)
containing $\mathrm{C}^{\cap} \mathrm{N}$ type ligands led to the isolation of mixed chloro/ mercapto bridged complexes, $\left[\mathrm{Pd}_{2}(\mu-\mathrm{Cl})(\mu-\mathrm{SR})\left(\mathrm{C}^{\cap} \mathrm{N}\right)_{2}\right.$] [34-37]. However, heavier organochalcogenolate ligands readily give bis(organochalcogenolate) complexes, $\left[\mathrm{Pd}_{2}(\mu-E A r)_{2}\left(\mathrm{C}^{\cap} \mathrm{N}\right)_{2}\right](\mathrm{E}=\mathrm{Se}$ or Te) [34]. The ${ }^{1} \mathrm{H}$ NMR spectrum of 4 in CDCl_{3} exhibited two sets of resonances attributable to cis and trans isomers. The trans isomer displayed a triplet and a quartet for CH_{3} and CH_{2} protons of magnetically equivalent two SEt groups. For the cis isomer two sets of triplets and quartets were observed for two non-equivalent SEt groups, one trans to metalated carbon and another trans to nitrogen donor atom of ppy. Platinum complexes derived from metalated phosphine ligand and bridging organochalcogenolate ligands have been isolated as a mixture of cis and trans isomers $[38,39]$.

The reaction of 1 with pyrazole and 3,5-dimethylpyrazole in the presence of a base gave pyrazolato-bridged derivatives, $\left[\mathrm{Pt}_{2}(\mu\right.$ $\left.\left.N^{\cap} N\right)_{2}(p p y)_{2}\right]\left(N^{\wedge} N=p z(5)\right.$; dmpz (6)]. Treatment of 1 with silver salt of 1,3-diphenylacetamidine gave a mononuclear complex, [$\mathrm{PtCl}(\mathrm{PhNCMeNHPh})(p p y)]$ (7) rather than the acetamidinatobridged complex. The 7 appeared to be formed by the reaction of moisture on acetamidine complex. The reactions of small bite three-atom anionic ligand, pyOH and pySH, with 1 gave after processing binuclear platinum(III) complexes, $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Opy})_{2}(\mathrm{ppy})_{2}\right]$ (8) and $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Spy})_{2}(\mathrm{ppy})_{2}\right](\mathbf{9})$, as isolable products. These ligands have been known to give binuclear platinum complexes with short metal-metal contacts which undergo facile oxidation leading to the formation of platinum(III) complexes [40]. For example, the complex, $\left[\mathrm{Pt}(\mathrm{Spy})_{2}\right]_{2}$ is readily oxidized in halogenated solvents (e.g. CHCl_{3}) to give $\left[\mathrm{Pt}_{2} \mathrm{X}_{2}(\mathrm{Spy})_{4}\right]$ [41]. The complexes $\mathbf{8}$ and $\mathbf{9}$ represent rare examples of orthometalated platinum complexes in higher oxidation state (>2) of platinum. Recently orthometalated palladium(III) and platinum(IV) complexes have been described [42-44]. The palladium(III) complex $\left[\mathrm{Pd}_{2} \mathrm{X}_{2}(\mu-\mathrm{OAc})_{2}(\text { benz })_{2}\right]$ (benz = metalated benzoquinoline) undergo bimetallic reductive elimination of halogenated benzoquinoline [44]. The reaction of 1 with large bite three-atom anionic ligands, such as ethylxanthate and diisopropyldithiophosphate yielded mononuclear complexes, $\left[\mathrm{Pt}\left(\mathrm{S}^{\cap} \mathrm{S}\right)(\mathrm{ppy})\right]\left(\mathrm{S}^{\cap} \mathrm{S}=\mathrm{S}_{2} \mathrm{COEt}(\mathbf{1 0}) ; \mathrm{S}_{2} \mathrm{P}^{2} \mathrm{OPr}^{i}\right\}_{2}$ (11)) in which the dithiolate ligand is chelated.

The mononuclear complexes 2,3 and 7 adopt a configuration in which nitrogen atom of the chelating ppy ligand is trans to the donor atom of the incoming ligand. A configuration with the N atom of the ppy cis to neutral donor would be unfavorable as it would be expected to isomerize via a dissociative mechanism [45].

The ${ }^{1} \mathrm{H}$ NMR spectra of these complexes displayed expected resonances. The $\mathrm{CH}-6$ proton of pyridine ring of the chelating ppy ligand appeared as a doublet in the range $7.81-9.66 \mathrm{ppm}$ with ${ }^{3} J\left({ }^{195} \mathrm{Pt}-{ }^{1} \mathrm{H}\right)$ of $18-37 \mathrm{~Hz}$. The ${ }^{195} \mathrm{Pt}$ NMR of $\mathbf{2}, \mathbf{3}, \mathbf{7}, \mathbf{1 0}, \mathbf{1 1}$ displayed single resonances in the region $\delta-3201$ to -3881 ppm . The ${ }^{195} \mathrm{Pt}$ signal for 11 appeared as a doublet due to coupling with a phosphorus nucleus $\left({ }^{2} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right)=298 \mathrm{~Hz}\right)$ of the dithiophosphate ligand. The ${ }^{31} \mathrm{P}$ NMR spectrum of 11 displayed a singlet at δ 96.8 ppm with ${ }^{2} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right)$ of 320 Hz , indicative of chelating dithiophosphate ligand $[46,47]$. The magnitude of ${ }^{2} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right)$ is in accord with dithiophosphate complexes of platinum(II) [46].

These complexes vary in color from pale -yellow, -orange to red. Absorption spectra of these complexes in dichloromethane showed bands assignable to $\pi-\pi^{*}$ and MLCT transitions from metalated ppy ligand in the region $255-400 \mathrm{~nm}$. The lower energy weaker absorption bands may be assigned to metal-to-ligand charge transfer transition. The absorption band in 2 at 400 nm (lit. 402 nm [19] due to MLCT) is blue shifted in dmso complex 3 (372 nm). It is worth noting that when nitrogen ligands whether in the terminal position (as in 7) or in bridging mode (e.g. 5 and 6) are substituted with sulfur donors in either situation (e.g. 3 in dmso complex and $\mathbf{4}$ in thiolato bridge) the MLCT band is blue shifted and appears at $\sim 370 \mathrm{~nm}$. Similarly the absorptions in dithi-
olate complexes ($\mathbf{1 0}$ and 11) are blue shifted with respect to the absorption band for $[\mathrm{Pt}(\mathrm{acac})(\mathrm{ppy})][17,20]$. The binuclear complexes $(\mathbf{5}, \mathbf{6}, \mathbf{8}, \mathbf{9})$ with shorter $\mathrm{Pt}-\mathrm{Pt}$ separation exhibited an additional weak band of lower energy (406-502 nm) which may be assigned to metal-metal-to-ligand charge transfer (MMLCT) transition. This band is red shifted with decreasing Pt-Pt separation. Preliminary work on photoluminescence revealed that these complexes, except $\left[\mathrm{Pt}_{2}(\mu-\mathrm{SEt})_{2}(\mathrm{ppy})_{2}\right]$, are emissive in solution. A detailed study on photoluminescence properties of these complexes will be published separately.

3.2. Crystal structures

Molecular structures of these complexes have been established unequivocally by single crystal X-ray diffraction analyses. ORTEP drawings are shown in Figs. 1-7 and selected interatomic parameters for $\mathbf{8}$ and 9 are given in Tables 2 and 3. The metalated 2-phenylpyridine ligands, in general, have a planar arrangement around distorted square planar platinum atom. The $\mathrm{Pt}-\mathrm{C}$ and $\mathrm{Pt}-\mathrm{N}$ distances involving metalated 2-phenylpyridine lie in the ranges $1.958-2.074$ and $1.963-2.148 \AA$, respectively, while the $\mathrm{N}-\mathrm{Pt}-\mathrm{C}$ angles vary between 78.6 and 82.3°. The acute $\mathrm{N}-\mathrm{Pt}-\mathrm{C}$ angle is characteristic of orthometalated five membered $\mathrm{C}^{\cap} \mathrm{N}$ ligands in transition metal complexes. The $\mathrm{Pt}-\mathrm{C}$ and $\mathrm{Pt}-\mathrm{N}$ distances and $\mathrm{N}-$ $\mathrm{Pt}-\mathrm{C}$ angle in the complexes reported here are well within the range reported in orthometalated 2-phenylpyridine complexes of platinum such as $[\mathrm{PtCl}(\mathrm{ppy})(\mathrm{Hppy})]$ [30], $[\mathrm{Pt}(\mathrm{ppy})(\mathrm{PhCOCHCOPh})]$ [20] and $\left[\mathrm{Pt}(\mathrm{ppy})\left\{\left(\mathrm{Me}_{2} \mathrm{pz}\right)_{2} \mathrm{BH}_{2}\right\}\right]$ [17].

Table 2
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Opy})_{2}(\mathrm{ppy})_{2}\right]$ (8).

$\mathrm{Pt}(1)-\mathrm{Cl}(1)$	$2.454(2)$	$\mathrm{Pt}(1)-\mathrm{C}(12)$	$1.988(7)$
$\mathrm{Pt}(1)-\mathrm{N}(1)$	$2.050(6)$	$\operatorname{Pt}(1)-\mathrm{Pt}(1)^{i}$	$2.5681(7)$
$\mathrm{Pt}(1)-\mathrm{O}(1)$	$2.134(5)$	$\mathrm{C}(1)-\mathrm{O}(1)$	$1.280(8)$
$\mathrm{Pt}(1)-\mathrm{N}(2)$	$2.016(6)$	$\mathrm{C}(1)-\mathrm{N}(1)$	$1.375(9)$
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\operatorname{Pt}(1)^{i}$	$173.63(4)$	$\mathrm{N}(1)-\mathrm{Pt}(1)-\mathrm{C}(12)$	$94.0(3)$
$\mathrm{Cl}(1)-\operatorname{Pt}(1)-\mathrm{Cl}(2)$	$88.6(2)$	$\mathrm{O}(1)-\operatorname{Pt}(1)-\mathrm{Pt}(1)^{i}$	$82.70(14)$
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{N}(2)$	$84.61(18)$	$\mathrm{O}(1)-\mathrm{Pt}(1)-\mathrm{N}(2)$	$95.4(2)$
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{O}(1)$	$91.03(15)$	$\mathrm{O}(1)-\mathrm{Pt}(1)-\mathrm{Cl}(12)$	$177.1(3)$
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{N}(1)$	$96.71(17)$	$\mathrm{N}(2)-\mathrm{Pt}(1)-\operatorname{Pt}(1)^{i}$	$94.89(17)$
$\mathrm{N}(1)-\mathrm{Pt}(1)-\mathrm{O}(1)$	$88.9(2)$	$\mathrm{N}(2)-\mathrm{Pt}(1)-\mathrm{C}(12)$	$81.6(3)$
$\mathrm{N}(1)-\mathrm{Pt}(1)-\mathrm{Pt}(1)^{i}$	$84.29(17)$	$\mathrm{C}(12)-\mathrm{Pt}(1)-\mathrm{Pt}(1)^{i}$	$97.6(2)$
$\mathrm{N}(1)-\mathrm{Pt}(1)-\mathrm{N}(2)$	$175.4(2)$		

Table 3
Selected bond lengths (\AA) and angles (${ }^{\circ}$) for [Pt2Cl2(μ-Spy)2(ppy)2].(C6H6)2 (9.(C6H6)2).

$\mathrm{Pt}(1)-\mathrm{Cl}(1)$	2.487(3)	$\mathrm{Pt}(2)-\mathrm{Cl}(2)$	2.475(4)
$\mathrm{Pt}(1)-\mathrm{S}(1)$	2.305(3)	$\mathrm{Pt}(2)-\mathrm{S}(2)$	2.312(3)
$\mathrm{Pt}(1)-\mathrm{N}(2)$	2.168(7)	$\mathrm{Pt}(2)-\mathrm{N}(1)$	2.173(7)
$\mathrm{Pt}(1)-\mathrm{N}(3)$	2.024(9)	$\mathrm{Pt}(2)-\mathrm{N}(4)$	2.015(9)
$\mathrm{Pt}(1)-\mathrm{C}(17)$	2.069(7)	$\mathrm{Pt}(2)-\mathrm{C}(28)$	2.067(8)
$\operatorname{Pt}(1)-\operatorname{Pt}(2)$	2.6253(7)		
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{Pt}(2)$	176.34(7)	$\mathrm{Cl}(2)-\mathrm{Pt}(2)-\mathrm{Pt}(1)$	176.08(8)
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{N}(2)$	92.0(2)	$\mathrm{Cl}(2)-\mathrm{Pt}(2)-\mathrm{N}(1)$	88.9(2)
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{S}(1)$	89.87(11)	$\mathrm{Cl}(2)-\mathrm{Pt}(2)-\mathrm{S}(2)$	93.80(11)
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{N}(3)$	85.8(3)	$\mathrm{Cl}(2)-\mathrm{Pt}(2)-\mathrm{N}(4)$	89.2(3)
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{C}(17)$	88.3(2)	$\mathrm{Cl}(2)-\mathrm{Pt}(2)-\mathrm{C}(28)$	84.8(2)
$\mathrm{N}(2)-\mathrm{Pt}(1)-\mathrm{Pt}(2)$	86.5(2)	$\mathrm{N}(1)-\mathrm{Pt}(2)-\mathrm{Pt}(1)$	87.2(2)
$\mathrm{N}(2)-\mathrm{Pt}(1)-\mathrm{S}(1)$	86.4(2)	$N(1)-\operatorname{Pt}(2)-S(2)$	86.3(2)
$\mathrm{N}(2)-\mathrm{Pt}(1)-\mathrm{N}(3)$	177.1(3)	$\mathrm{N}(1)-\mathrm{Pt}(2)-\mathrm{N}(4)$	177.4(3)
$\mathrm{N}(2)-\mathrm{Pt}(1)-\mathrm{C}(17)$	96.8(3)	$\mathrm{N}(1)-\mathrm{Pt}(2)-\mathrm{C}(28)$	97.6(3)
$\mathrm{S}(1)-\mathrm{Pt}(1)-\mathrm{Pt}(2)$	86.71(8)	$\mathrm{S}(2)-\mathrm{Pt}(2)-\mathrm{Pt}(1)$	86.63(7)
$\mathrm{S}(1)-\mathrm{Pt}(1)-\mathrm{N}(3)$	95.6(3)	$\mathrm{S}(2)-\mathrm{Pt}(2)-\mathrm{N}(4)$	95.6(3)
$\mathrm{S}(1)-\mathrm{Pt}(1)-\mathrm{C}(17)$	176.3(2)	$\mathrm{S}(2)-\mathrm{Pt}(2)-\mathrm{C}(28)$	175.8(2)
$\mathrm{N}(3)-\operatorname{Pt}(1)-\operatorname{Pt}(2)$	95.8(3)	$\mathrm{N}(4)-\mathrm{Pt}(2)-\mathrm{Pt}(1)$	94.6(2)
$N(3)-\operatorname{Pt}(1)-C(17)$	81.1(3)	$\mathrm{N}(4)-\mathrm{Pt}(2)-\mathrm{C}(28)$	80.4(4)
$\mathrm{C}(17)-\mathrm{Pt}(1)-\operatorname{Pt}(2)$	95.2(2)	$\mathrm{C}(28)-\mathrm{Pt}(2)-\mathrm{Pt}(1)$	95.1(2)

The structural features of [PtCl(ppy)(Hppy)] [30] and [$\mathrm{PtCl}(\mathrm{dmso})(\mathrm{ppy})][48]$ (see Supplementary material) are in accordance with the structural parameters reported earlier.

The molecular structure of $[\mathrm{PtCl}(\mathrm{ppy})(\mathrm{PhNCMeNHPh})]$ is shown in Fig. 3. The amidine ligand is coordinated to platinum through $\mathrm{C}=\mathrm{N}$ and is trans to the nitrogen atom of the metalated 2-ppy ligand. The two Pt-N distances are comparable and are in accordance with $\mathrm{Pt}-\mathrm{N}$ bond length reported in other platinum complexes, such as $\left[\mathrm{PtCl}_{2}\right.$ (bipy)] [29]. The $\mathrm{N}-\mathrm{C}-\mathrm{N}$ angle in amidine ($\left.115.0(12)^{\circ}\right)$ is reduced markedly from the ideal value of 120°.

The pyrazolato-bridged complexes, $\left[\mathrm{Pt}_{2}(\mu-\mathrm{pz})_{2}(\mathrm{ppy})_{2}\right]$ and $\left[\mathrm{Pt}_{2}(\mu-\mathrm{dmpz})_{2}(\mathrm{ppy})_{2}\right]$, (Figs. 1 and 2, respectively) comprise of two "Pt(ppy)" fragments which are held together by exo-bidentate pyrazolate ligands. The six-membered " $\mathrm{Pt}_{2} \mathrm{~N}_{4}$ " ring has a boat conformation with the platinum atoms at the vertexes of the boat. Similar boat conformation has been reported in $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\right.$ $\mathrm{dmpz})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}$] [49], $\left[\mathrm{Pt}_{2}(\mu-\mathrm{dmpz})_{2}\left(\mathrm{P}^{\wedge} \mathrm{C}\right)_{2}\right.$] [50] and $\left[\mathrm{Pt}_{2}(\mu-\right.$ $\mathrm{pz})_{2}(\text { thpy })_{2}$] [29]. The two pyrazolato-ligands are planar within experimental error and the average dihedral angles between the two planes are 100.4° and 98.98°, respectively. The molecules adopt a sym-trans configuration. Both sym-trans (e.g. $\left[\mathrm{Pt}_{2}(\mu-\mathrm{pz})_{2}(\text { thpy })_{2}\right]$

Fig. 1. ORTEP drawing with crystallographic numbering scheme for $\left[\mathrm{Pt}_{2}(\mu-\mathrm{pz})_{2}(\mathrm{ppy})_{2}\right] \cdot\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.5\left(5 \cdot\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{0.5}\right)$ (ellipsoids drawn with 50% probability). Selected bond lengths $\left(\AA \AA\right.$) and angles $\left({ }^{\circ}\right): \operatorname{Pt}(1)-N(1) 2.11(2), \operatorname{Pt}(1)-N(3) 2.09(2), \operatorname{Pt}(3)-\mathrm{N}(7) 2.04(2), \operatorname{Pt}(3)-\mathrm{N}(9) 2.04(2), \operatorname{Pt}(2)-\mathrm{N}(2) 2.02(2), \operatorname{Pt}(4)-\mathrm{N}(10) 2.08(2), \operatorname{Pt}(2)-\mathrm{N}(4) 2.01(2), \operatorname{Pt}(4)-$ $\mathrm{N}(8) 2.00(3), \operatorname{Pt}(1)-\mathrm{Pt}(2) 3.289, \operatorname{Pt}(3)-\mathrm{Pt}(4) 3.289, \mathrm{~N}(1)-\mathrm{Pt}(1)-\mathrm{N}(3) 86.3(8), \mathrm{N}(9)-\mathrm{Pt}(3)-\mathrm{N}(7) 87.1(9), \mathrm{N}(2)-\mathrm{Pt}(2)-\mathrm{N}(4) 87.1(8), \mathrm{N}(10)-\mathrm{Pt}(4)-\mathrm{N}(8) 84.8(9)$.

Fig. 2. ORTEP drawing with crystallographic numbering scheme for $\left[\mathrm{Pt}_{2}(\mu-\mathrm{dmpz})_{2}(\mathrm{ppy})_{2}\right] \cdot\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{0.5} \cdot \mathrm{H}_{2} \mathrm{O}\left(6 \cdot\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{0.5} \cdot \mathrm{H}_{2} \mathrm{O}\right)$, (ellipsoids drawn with 50% probability $)$. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): \operatorname{Pt}(3)-\mathrm{N}(10) 2.076(15), \operatorname{Pt}(1)-\mathrm{N}(3) 2.050(14), \operatorname{Pt}(3)-\mathrm{N}(11) 2.063(13), \operatorname{Pt}(1)-\mathrm{N}(5) 2.005(16), \operatorname{Pt}(4)-\mathrm{N}(12) 2.095(14), \operatorname{Pt}(2)-\mathrm{N}(4)$ $2.078(14), \operatorname{Pt}(2)-\mathrm{N}(6) 2.070(15), \operatorname{Pt}(4)-\mathrm{N}(9) 1.997(13), \operatorname{Pt}(2)-\operatorname{Pt}(1) 3.1904(13), \operatorname{Pt}(4)-\operatorname{Pt}(3) 3.2029(13), \mathrm{N}(10)-\operatorname{Pt}(3)-\mathrm{N}(11) 84.9(6), \mathrm{N}(3)-\operatorname{Pt}(1)-\mathrm{N}(5) 85.5(6), \mathrm{N}(4)-\operatorname{Pt}(2)-\mathrm{N}(6)$ 85.3(6), $\mathrm{N}(12)-\mathrm{Pt}(4)-\mathrm{N}(9) 88.0(6)$.

Fig. 3. ORTEP drawing with crystallographic numbering scheme for [Pt(ppy)(PhNHCMeNPh)Cl] (7) (ellipsoids drawn with 50% probability). Selected bond lengths (\AA) and angles $\left(^{\circ}\right): ~ \mathrm{Pt}(1)-\mathrm{Cl}(1) 2.405(3), \mathrm{Pt}(1)-\mathrm{C}(7) 1.958(13), \mathrm{Pt}(1)-$ $\mathrm{N}(1) 2.038(10), \mathrm{N}(2)-\mathrm{C}(18) 1.326(19), \mathrm{Pt}(1)-\mathrm{N}(2) 2.036(11), \mathrm{N}(3)-\mathrm{C}(18) 1.348(18)$, $\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{N}(1) \quad 95.7(3), \mathrm{N}(1)-\mathrm{Pt}(1)-\mathrm{N}(2) \quad 176.3(5), \mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{N}(2) 87.5(4)$, $\operatorname{Pt}(1)-\mathrm{N}(2)-\mathrm{C}(18) 125.5(9), \mathrm{N}(2)-\mathrm{C}(18)-\mathrm{N}(3) 115.0(12)$.
[29], [$\mathrm{Pt}_{2}\left(\mu-3-\mathrm{Me}, 5-\mathrm{Bu}^{\mathrm{t}} \mathrm{pz}_{2}\left\{\left(2,4-\mathrm{F}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right) \mathrm{py}\right\}_{2}\right.$] [51] and sym-cis (e.g. $\left.\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{N}^{\wedge} \mathrm{N}\right)_{2}\left\{\left(2,4-\mathrm{F}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right) \mathrm{py}\right\}_{2}\right] \quad\left(\mathrm{N}^{\wedge} \mathrm{N}=\mathrm{pz}, \quad \mathrm{dmpz}, \quad \mathrm{Bu}^{\mathrm{t}}{ }_{2} \mathrm{pz}\right)\right)$ [51] have been reported for metalated arylpyridine platinum complexes containing pyrazolate-bridges. The two-bridging pyrazolate ligands form disparate $\mathrm{Pt}-\mathrm{N}$ bonds reflecting the different trans influence of the C-(phenyl) and N (pyridyl) donor atoms of ppy. The shorter $\mathrm{Pt}-\mathrm{N}$ distances have the N atoms trans to N of ppy while longer $\mathrm{Pt}-\mathrm{N}$ bond lengths have the $\mathrm{N}(\mathrm{pz})$ trans C (phenyl) atom. The Pt \ldots Pt spacings are 3.289 (for pz) and av. 3.196 (for dmpz) \AA. The Pt \cdots Pt separations in various pyrazolato-bridged complexes are $3.170(1) \AA \quad\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{dmpz})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right] \quad$ [49]; $3.432(1) \AA \quad\left[\mathrm{Pt}_{2}(\mu-\mathrm{pz})_{2}(\text { thpy })_{2}\right] \quad[29] ; \quad 2.8343-3.3763 \AA \quad\left[\mathrm{Pt}_{2}(\mu-\right.$ $\left.\mathrm{N}^{\wedge} \mathrm{N}\right)_{2}\left\{\left(2,4-\mathrm{F}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right) \mathrm{py}\right\}_{2}$] [51]. The Pt \cdots Pt separation decreases by

Fig. 4. ORTEP drawing with crystallographic numbering scheme for $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Opy})_{2}(\mathrm{ppy})_{2}\right]$ (8) (ellipsoids drawn with 50% probability).
substituting bulky groups at 3 - and 5-positions of the bridging pyrazolate ligand [51]. There are weak $\pi-\pi$ interactions between the ppy groups of two molecules. The two boat-shaped molecules are entangled in each other.

The complexes $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Opy})_{2}(\mathrm{ppy})_{2}\right]$ and $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Spy})_{2}(\mathrm{p}-\right.$ $\mathrm{py})_{2}$] (Figs. 4 and 5 , respectively) have similar geometries containing two platinum atoms bridged by two $\mathrm{pyE}(\mathrm{E}=\mathrm{O}$ or S$)$ ligands in a head-to-tail fashion and overall configuration can be compared

Fig. 5. ORTEP drawing with crystallographic numbering scheme for $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Spy})_{2}(\mathrm{ppy})_{2}\right] \cdot\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}\left(\mathbf{9} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}\right)$ (ellipsoids drawn with 50% probability).
with $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mathrm{Opy})_{2}(\mathrm{en})_{2}\right]^{2+}$ (en $\left.=\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)$ [52,53]. Each platinum atom adopts an octahedral configuration defined by chelating ppy ligand, E and N atoms of pyE ligands, a chloride and a PtPt bond. The oxygen/sulfur atom of Epy ligand is trans to the Catom of the metalated ppy. The platinum atom coordination planes are deviated with the twist angles (defined by the torsion angle E-$\mathrm{Pt}-\mathrm{Pt}-\mathrm{N}$) of 26.57° and 33.21° from the ideal eclipsed configuration. The ppy rings are inclined to each other at an angle of 14.81° and 13.89° in $\mathbf{8}$ and $\mathbf{9}$, respectively. The Pt-Cl distances (av. $2.454 \AA \AA$ in Opy and av. $2.481 \AA$ in Spy) can be compared with those found in $\mathrm{Pt}\left(\right.$ III) complexes (e.g. $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(4-\mathrm{MepyS})_{4}\right], \mathrm{Pt}-\mathrm{Cl}=$ av. $2.451 \AA$) [54]. The Pt-Pt distances 2.5681(7) \AA (in Opy) can be compared to the reported value $\left[\mathrm{Pt}_{2} \mathrm{XY}(\mathrm{Opy})_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ (av. $2.575 \AA$) [55], whereas $2.6253(7) \AA$ (in pyS) is slightly longer than reported for $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mathrm{Spy})_{4}\right](2.532(1) \AA)$ [40]. The Pt-Pt distance in platinum(III) complexes varies between 2.39 and $2.78 \AA$, being shorter with smaller bite ligands [41].

The crystal structure of $\left[\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{COEt}\right)(\mathrm{ppy})\right]$ (Fig. 6) consists of discrete monomeric molecules. The geometry around platinum is distorted square planar and is defined by the N and C atoms of the metalated 2-phenylpyridine and two sulfur atoms of slightly asymmetrically chelated xanthate ligand. The latter adopts its characteristic geometry of chelated xanthate ligand in metal complexes [56]. The strain imposed by the four-membered $\mathrm{PtS}_{2} \mathrm{C}$ ring is reflected in the S-Pt-S angle which is compressed to $74.28(6)^{\circ}$ while the adjacent angles C7-Pt1-S2 and N1-Pt1-S1 are opened to 101.79(19) ${ }^{\circ}$ and $102.82(15)^{\circ}$, respectively. The Pt-S distance trans to C-(phenyl) is longer than the one trans to nitrogen (pyridyl) owing to their different trans influences. The Pt-S distances are well within the range reported for the dithiolato complexes, e.g. [$\mathrm{PtMe}\left\{\mathrm{S}_{2} \mathrm{P}(\mathrm{O}-\right.$ $\left.\left.\left.\mathrm{Pr}^{i}\right)_{2}\right\}\left(\mathrm{AsPh}_{3}\right)\right] \quad\left(\mathrm{Pt}-\mathrm{S}=2.341(2), \quad 2.434(2) \AA\right.$) [46], $\quad\left[\mathrm{PtBu}^{i}\left\{\mathrm{~S}_{2} \mathrm{CN}-\right.\right.$ $\left.\mathrm{Me}_{2}\right\}\left(\mathrm{Pc}-\mathrm{Hx}_{3}\right)$] $(\mathrm{Pt}-\mathrm{S}=2.404(2), 2.412(3))$ [57]. The two C-S distances are similar (1.684(6) and 1.698(6) \AA) and are intermediate between double ($1.62 \AA$) and single bond ($1.81 \AA$) values indicating delocalization of double bond over OCS_{2}^{-}moiety.

The crystal structure of $\left[\operatorname{Pt}\left\{\mathrm{S}_{2} \mathrm{P}\left(\mathrm{OPr}^{i}\right)_{2}\right\}(\right.$ ppy $\left.)\right]$ (Fig. 7) shows that the square planar platinum is coordinated by C and N atoms of ppy ligand and the two S atoms of symmetrically chelated dithiophosphate ligand. The molecule has a mirror plane bisecting Pt and P atoms, thus C and N atoms of ppy are indistinguishable. Unlike the xanthate complex, the dithiophosphate is symmetrically

Fig. 6. ORTEP drawing with crystallographic numbering scheme for $\left[\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{COEt}\right)(-\right.$ ppy)] (10) (ellipsoids drawn with 50% probability). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): ~ P t(1)-S(1) 2.4018(19), ~ S(1)-C(12) 1.684(6), \operatorname{Pt}(1)-S(2) 2.3106(18)$, $\mathrm{S}(2)-\mathrm{C}(12) \quad 1.698(6), \quad \operatorname{Pt}(1)-\mathrm{N}(1) \quad 2.018(5), \quad \mathrm{C}(12)-\mathrm{O}(1) \quad 1.315(7), \quad \mathrm{Pt}(1)-\mathrm{C}(7)$ $2.008(6), S(1)-\operatorname{Pt}(1)-S(2) 74.28(6), S(2)-\operatorname{Pt}(1)-C(7) 101.79(19), \operatorname{Pt}(1)-S(1)-C(12)$ 84.2(2), $\mathrm{S}(1)-\mathrm{C}(12)-\mathrm{S}(2) 114.6(4), \mathrm{Pt}(1)-\mathrm{S}(2)-\mathrm{C}(12) \quad 86.9(2), \mathrm{S}(1)-\mathrm{C}(12)-\mathrm{O}(1)$ 119.7(4), S(2)-C(12)-O(1) 125.7(5), S(1)-Pt(1)-N(1) 102.82(15), C(7)-Pt(1)-N(1) 81.1(2).

Fig. 7. ORTEP drawing with crystallographic numbering scheme for $\left[\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{P}\{\mathrm{O}-\right.\right.$ $\left.\left.\left.\mathrm{Pr}^{\mathrm{i}}\right\}_{2}\right)(\mathrm{ppy})\right](\mathbf{1 1})\left(\mathrm{N} 1^{i}\right.$ has been changed to C 10 in the figure) (ellipsoids drawn with 50% probability). Selected bond lengths (\AA) and angles (${ }^{\circ}$): $\operatorname{Pt}(1)-\mathrm{S}(1) 2.371(3), \mathrm{P}(1)-$ $\mathrm{S}(1)$ 2.003(4), $\mathrm{Pt}(1)-\mathrm{S}(1)^{i} 2.371(3), \mathrm{P}(1)-\mathrm{S}(1)^{i} 2.003(4), \mathrm{Pt}(1)-\mathrm{N}(1) 2.020(9), \mathrm{P}(1)-$ $\mathrm{O}(1) \quad 1.569(10), \quad \mathrm{Pt}(1)-\mathrm{C}(10) \quad 2.020(9), \quad \mathrm{P}(1)-\mathrm{O}(2) \quad 1.570(9), \quad \mathrm{S}(1)-\mathrm{Pt}(1)-\mathrm{S}(1)^{i}$ 82.80(17), S(1)-P(1)-S(1) 103.0(2), N(1)-Pt(1)-C(10) 82.1(5).
chelated as the two Pt-S distances (2.371(3) \AA) are same and are in accord with the literature values (e.g. $\left[\mathrm{Pt}\left\{\mathrm{S}_{2} \mathrm{P}(\mathrm{OEt}) \mathrm{Ph}\right\}_{2}\right]$ (Pt$\mathrm{S}=2.333(3)$ and $2.341(3) \AA$) [58] and $\left[\mathrm{Pt}\left\{\mathrm{S}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right\}_{2}\left(\mathrm{PPh}_{3}\right)\right](\mathrm{Pt}-$ $S=2.325(10)-2.388(12) \AA$) [47]. The Pt-S distances (2.003(4) \AA) are similar and are intermediate between single ($2.09 \AA$) and double bond ($1.94 \AA$) values indicating symmetrically delocalized $\mathrm{P}-\mathrm{S}$ π bond. The acute $\mathrm{S}-\mathrm{Pt}-\mathrm{S}$ angle $\left(82.8^{\circ}\right)$ is within the range ($\sim 83^{\circ}$) of chelating dithiophosphate ligand $\left(\left[\mathrm{Pt}\left\{\mathrm{S}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right\}_{2}\left(\mathrm{PPh}_{3}\right)\right]\right.$ (S-Pt$\left.\mathrm{S}=82.7(3)^{\circ}\right) \quad[47] \quad$ and $\quad\left[\mathrm{PtMe}\left\{\mathrm{S}_{2} \mathrm{P}\left(\mathrm{OPr}^{i}\right)_{2}\right\}\left(\mathrm{AsPh}_{3}\right)\right] \quad(\mathrm{S}-\mathrm{Pt}-$ $\mathrm{S}=83.10(7)^{\circ}[54]$.

Acknowledgements

We thank Drs. T. Mukherjee and D. Das for encouragement of this work. We are thankful to the Chemistry Department, ITT Bombay, Mumbai for providing microanalysis of the complexes. The authors also thank Dr. V. Sudarshan for recording photoluminiscence spectra. One of the authors (NG) is thankful to DAE for the award of a Senior Research Fellowship.

Appendix A. Supplementary material

CCDC 737106, 737107, 737108, 737109, 737110, 737111, 737112,737113 and 737114 contain the supplementary crystallographic data for complexes $\mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{9}, 10,11,2$ and $\mathbf{3}$, respectively These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/ j.jorganchem.2010.01.035.

References

[1] V.K. Jain, L. Jain, Coord. Chem. Rev. 249 (2005) 3075-3197.
[2] I. Omae, Coord. Chem. Rev. 83 (1988) 137-167.
[3] A.D. Ryabov, Synthesis (1985) 233-252.
[4] M. Pfeffer, Pure Appl. Chem. 64 (1992) 335-342.
[5] P. Espinet, M.A. Esteruelas, L.A. Oro, J.L. Serrano, E. Sola, Coord. Chem. Rev. 117 (1992) 215-274.
[6] A.P. Polishchuk, T.V. Timofeeva, Russ. Chem. Rev. 62 (1993) 291-321.
[7] M. Ghedini, D. Pucci, A. Crispini, G. Barberio, Organometallics 18 (1999) 21162124.
[8] M. Hissler, J.E. McGarrah, W.B. Connick, D.K. Geiger, S.D. Cummings, R. Eisenberg, Coord. Chem. Rev. 208 (2000) 115-137.
[9] W. Lu, B.-X. Mi, M.C.W. Chan, Z. Hui, C.M. Che, N. Zhu, S.T. Lee, J. Am. Chem. Soc. 126 (2004) 4958-4971.
[10] W. Sun, H. Zhu, P.M. Barron, Chem. Mater. 18 (2006) 2602-2610.
[11] R.C. Evans, P. Douglas, C.J. Winscom, Coord. Chem. Rev. 250 (2006) 2093-2126.
[12] M. López-Torres, A. Fernández, J.J. Fernández, A. Suárez, S. Castro-Juiz, J.M. Vila, M.T. Pereira, Organometallics 20 (2001) 1350-1353.
[13] J.A. Gareth Williams, S. Develay, D.L. Rochester, L. Murphy, Coord. Chem. Rev. 252 (2008) 2596-2611.
[14] V.H. Houlding, M. Miskowski, Coord. Chem. Rev. 111 (1991) 145-152.
[15] J.A.G. Williams, Top. Curr. Chem. 281 (2007) 205-268.
[16] D.M. Roundhill, H.B. Gray, C.M. Che, Acc. Chem. Res. 22 (1989) 55-61.
[17] J. Brooks, Y. Babayan, S. Lamansky, P.I. Djurovich, I. Tsyba, R. Bau, M.E. Thompson, Inorg. Chem. 41 (2002) 3055-3066.
[18] B. Yin, F. Niemeyer, J.A. Gareth Williams, J. Jiang, A. Boucekkine, L. Toupet, H.L. Bozec, V. Guerchais, Inorg. Chem. 45 (2006) 8584-8596.
[19] C.A. Craig, F.O. Garces, R.J. Watts, R. Palmans, A.J. Frank, Coord. Chem. Rev. 97 (1990) 193-208.
[20] J. Liu, C.-J. Yang, Q.-Y. Cao, M. Xu, J. Wang, H.-N. Peng, W.-F. Tan, X.-X. Lü, X.-C. Gao, Inorg. Chim. Acta 362 (2009) 575-579.
[21] J.Y. Cho, K.Y. Suponitsky, J. Li, T.V. Timofeeva, S. Barlow, S.R. Marder, J. Organomet. Chem. 690 (2005) 4090-4093.
[22] SIR-92- A. Altomare, G. Cascarano, C. Gracovazzo, A. Guagliardi, J. Appl. Crystallogr. 26 (1993) 343-350.
[23] G.M. Sheldrick, shelxs97, Program for the solution of crystal structure, University of Göttigen, Germany, 1997
[24] T. Higashi, ABSCOR- Empirical Absorption Correction based on Fourier Series Approximation, Rigaku Corporation 3-9-12 Matsubara, Akishima, Japan, 1995.
[25] PSISCANS-A.C.T. North, D.C. Phillips, F.S. Mathews, Acta Crystallogr., Sect. A 24 (1968) 351-359.
[26] C.K. Johnson, ORTEP-II, Repot ORNL-5136, Oak Ridge National Laboratory, Oak Ridge TN (1976).
[27] B.N. Cockburn, D.V. Howe, T. Keating, B.F.G. Johnson, J. Lewis, J. Chem. Soc., Dalton Trans. (1973) 404-410.
[28] F. Niedermair, K. Waich, S. Kappaun, T. Mayr, G. Trimmel, K. Mereiter, C. Slugove, Inorg. Chim. Acta 360 (2007) 2767-2777.
[29] S.-W. Lai, M.C.W. Chan, K.-K. Cheung, S.-M. Peng, C.-M. Che, Organometallics 18 (1999) 3991-3997.
[30] M.M. Mdleleni, J.S. Bridgewater, R.J. Watts, P.C. Ford, Inorg. Chem. 34 (1995) 2334-2342.
[31] A. Kasahara, Bull. Chem. Soc. Jpn. 41 (1968) 1272.
[32] E.C. Constable, A.M.W.C. Thompson, T.A. Leese, D.G.F. Reese, D.A. Tocher, Inorg. Chim. Acta 182 (1991) 93-100.
[33] J.A. Davies, F.R. Hartley, Chem. Rev. 81 (1981) 79-90.
[34] N.D. Ghavale, S. Dey, V.K. Jain, M. Nethaji, Inorg. Chim. Acta 361 (2008) 24622470.
[35] J. Ruiz, N. Cutillas, J. Torregrosa, G. García, G. López, P.A. Chaloner, P.B. Hitchcock, R.M. Harrison, J. Chem. Soc., Dalton Trans. 16 (1994) 2353-2357.
[36] J. Buey, G.A. Díez, P. Espinet, S. García-Granda, E. Pérez-Carreno, Eur. J. Inorg. Chem. 9 (1998) 1235-1241.
[37] J. Buey, S. Coco, L. Díez, P. Espinet, J.M. Martín-Alvarez, J.A. Miguel, S. GarcíaGranda, A. Tosouro, I. Ledoux, J. Zyss, Organometallics 17 (1998) 1750-1755.
[38] H.C. Clark, V.K. Jain, G.S. Rao, J. Organomet. Chem. 279 (1985) 181-191.
[39] V.K. Jain, S. Kannan, J. Organomet. Chem. 405 (1991) 265-271.
[40] K. Umakoshi, I. Kinoshita, A. Ichimura, S. Ooi, Inorg. Chem. 26 (1987) 35513556.
[41] K. Umakoshi, Y. Sasaki, Adv. Inorg. Chem. 40 (1993) 187-239.
[42] S. Jamali, S.M. Nabavizadeh, M. Rashidi, Inorg. Chem. 47 (2008) 5441-5452.
[43] J. Mamtora, S.H. Crosby, C.P. Newman, G.J. Clarkson, J.P. Rourke, Organometallics 27 (2008) 5559-5565.
[44] D.C. Powers, T. Ritter, Nat. Chem. Biol. 1 (2009) 302-309.
[45] G.W.V. Cave, F.P. Fanizzi, R.J. Deeth, W. Errington, J.P. Rourke, Organometallics 19 (2000) 1355-1364.
[46] V.K. Jain, S. Chaudhury, A. Vyas, R. Bohra, J. Chem. Soc., Dalton Trans. 8 (1994) 1207-1211.
[47] J.P. Fackler, L.D. Thompson, I.J.B. Lin, T.A. Stephenson, R.O. Gould, J.M.C. Alison, A.J.F. Fraser, Inorg. Chem. 21 (1982) 2397-2403.
[48] N. Godbert, T. Pugliese, I. Aiello, A. Bellusci, A. Crispini, M. Ghedini, Eur. J. Inorg. Chem. 32 (2007) 5105-5111.
[49] V.K. Jain, S. Kannan, E.R.T. Tiekink, J. Chem. Soc., Dalton Trans. 23 (1993) 36253628.
[50] A.B. Goel, S. Goel, D. Vanderveer, Inorg. Chim. Acta 82 (1984) L9-L10.
[51] B. Ma, J. Li, P.I. Djurovich, M. Yousufuddin, R. Bau, M.E. Thompson, J. Am. Chem. Soc. 127 (2005) 28-29.
[52] L.S. Hollis, S.J. Lippard, J. Am. Chem. Soc. 105 (1983) 3494-3503.
[53] L.S. Hollis, S.J. Lippard, Inorg. Chem. 21 (1982) 2116-2117.
[54] D.M.L. Goodgame, R.W. Rollins, A.M.Z. Slawin, D.J. Williams, P.W. Zard, Inorg. Chim. Acta 120 (1986) 91-101.
[55] L.S. Hollis, M.M. Roberts, S.J. Lippard, Inorg. Chem. 22 (1983) 3637-3644.
[56] E.R.T. Tiekink, G. Winter, Rev. Inorg. Chem. 12 (1992) 183-302.
[57] D.L. Reger, Y. Ding, D.G. Garza, L. Lebioda, J. Organomet. Chem. 452 (1993) 263-270.
[58] J.P. Fackler Jr., L.D. Thompson Jr., Inorg. Chim. Acta 48 (1981) 45-52.

[^0]: * Corresponding author. Fax: +91 2225505151.

 E-mail address: jainvk@barc.gov.in (V.K. Jain).

